Guide to SMES Units

From Baystation

Superconducting Magnetic Energy Storage (often shortened to SMES) is a device used to store electrical power. While SMES units are very effective, they are also expensive, requiring high end circuit board and expensive parts. If you need to quickly replace the SMES you may try using cheaper but less powerful Cell Rack PSU instead. SMES units may be upgraded to increase their capacity and/or maximal input/output levels.


SMES units may be configured via interface which is opened by left-clicking with empty hand on the SMES. Alternatively you may use the RCON console to operate most SMESs on station. The interface looks like this:

Smes gui.png


Each SMES needs terminal to operate properly. This terminal allows you to charge the SMES from one power network, and output into another one. By using appropriate controls in the GUI you may set any input value up to certain cap. This cap can be increased by upgrading the SMES unit, as described further in this guide. Also, please note that setting larger input than available will cause the SMES to enter "Partially Charging" state. This means the SMES is still charging, but not at set input rate. You may choose from two input options - OFF and AUTO.


The SMES outputs power into wire placed directly under it. Usually, you want to keep output lower than input, however sometimes you may have to increase output to compensate for larger demands. This is common with main Engine SMES when setting up Substations. The output rate is also capped and also upgradable. You may choose from two output options which are self explanatory - ONLINE and OFFLINE.


Required tools

Screwdriver.png Screwdriver Wrench.png Wrench
Crowbar.png Crowbar Insulated gloves.png Insulated Gloves (Recommended)
Wirecutters.png Wirecutters Multitool.png Multitool (Optional, only for disabling failsafes)
Welding tool.gif Welding Tool


  1. First of all you should ensure the SMES is discharged. While there is a workaround, it may (read: will) cause an injury and/or damage.
  2. Open the SMES's interface by left-clicking it. Ensure both Input and Output are turned Off.
  3. Use Screwdriver.png screwdriver on the SMES to open the access panel.
  4. Use Wirecutters.png wirecutters on the SMES to cut the terminal. If the terminal is missing (or destroyed) simply skip this step.

Deconstruction Steps

  1. Complete everything in Preparations
  2. (OPTIONAL) Use Multitool.png multitool on the SMES to disconnect safety circuit. This step may be skipped if you completely discharged the SMES. DO NOT PROCEED IF SMES IS CHARGED ABOVE 50%. Usually, anything below 15% is safe (with gloves). Anything above 50% is likely to kill you.
  3. Use Crowbar.png crowbar on the SMES to begin removing the components. This may take up to 60 seconds, depending on amount of coils in the SMES. Basic SMESs should take approximately 10 seconds. SMES will turn into machine frame and few components. You may use these components for research or for repairs/upgrades.
  4. Use Wirecutters.png wirecutters to remove cables from the machine frame
  5. Use Wrench.png wrench to dismantle the machine frame

SMES Failure

Disabling failsafes, as outlined in Hacking section of this page may cause SMES Failure when removing the components (crowbar step), or adding new components (inserting new coils). Chance of "something bad" happening is directly proportional to SMES charge percentage. SMES charged to 75% has 75% probability of failing, etc. If this failure happens, effects are once again related to charge percentage.

  • Discharge - (Always) The SMES will lose ALL it's remaining charge.
  • Sparks - (Always) Mostly harmless, some sparks will fly from the SMES, potentionally igniting fire if flammable material is nearby.
  • Electrocution - (Always) Shocks the user. Please note that while insultated gloves mitigate the effect, they aren't guaranteed to 100% protect you. Damage scales with charge percentage. Anything above 60% charge is instant-kill even with gloves.
  • EM Pulse - (above 15% charge) Causes electromagnetic pulse which breaks nearby electronics. This usually trips fire alarms, breaks consoles, and may even kill/injure the AI/cyborgs/people with prosthetics depending on situation. Size of EM Pulse is proportional to amount of stored power.
  • APC Overload - (above 35% charge) Overloads lighting circuits of few APCs connected to the SMES's output. Please note that having something between the SMES and APC (such as, another SMES) will prevent the damage. Chance is proportional to amount of stored power.
  • APC Failure - (above 35% charge) Completely breaks few APCs in SMES's output. Same rule as above applies.
  • Magnetic Containment Failure - (above 60% charge) The worst thing that can happen. If SMES's magnetic containment fails remaining charge is released in form of violent explosion. The SMES is completely destroyed, as well as few nearby tiles. This almost always causes hull breach, and the explosion may gib you. After this failure is triggered you have 30-60 seconds before the SMES blows up.


SMES units may be hacked to enable or disable various features. Remember to wear your protective equipment or risk injury. To access the wiring open front panel with screwdriver. Then click the SMES with empty hand to open up wiring window. There are five wires, which have randomized colours every round.

  • Input - Cutting this will cause the SMES to stop inputting. Pulsing will temporarily disable input.
  • Output - Cutting this will cause the SMES to stop outputting. Pulsing will temporarily disable output.
  • RCON - Cutting this will disable RCON (Remote CONtrol), hiding the SMES from control consoles. It also disables AI control. Pulsing does nothing.
  • Failsafes - Cutting will allow you to modify the SMES even if it is charged. Please note that this may result in catastrophic overload if charge is large enough. Pulsing does nothing.
  • Grounding - Cutting or pulsing this wire will overload the SMES, causing quick dissipation of stored energy. This energy may however damage or destroy APCs in output power network, so it is advised to either disconnect the SMES, or at least use Substations to prevent damage to many APCs. Mending will restore grounding and stop the overload. This is highly similar failure of charged SMES, but with less risks involved for the user. Remember that doing this as non-antagonist is not a good idea.


Required Tools

Cable coil.png Cable Coil, 2x (Two full coils)
Steel sheets.png Steel Sheets, 5x
Circuitboard.png SMES Circuit Board May be obtained from Research, or salvaged from existing SMESs.
Smes coil.png Superconducting Magnetic Coil May be obtained from Cargo or salvaged from existing SMES. You need at least one coil, but adding more coils increases capacity and input/output cap of the SMES. You may add up to six coils into single SMES.
Console screen.png Console Screen May be vended by the Robco Tool Maker in the engineering bay.
Input controller.png Input Controller May be vended by the Robco Tool Maker in the engineering bay.
Insulated gloves.png Insulated Gloves Optional, but recommended (especially if you are going to manipulate wiring)

Construction Steps

  1. Use your Steel sheets.png steel sheets to build machine frame.
  2. Use Cable coil.png cable coil to place wire under the machine frame and connect it to a cable line. The SMES will output into this wire.
  3. Fix the machine frame to the ground with a Wrench.png wrench.
  4. Use a Cable coil.png cable coil on the machine frame to add wires.
  5. Use a Circuitboard.png SMES Circuit Board on the wired machine frame.
  6. Use a Screwdriver.png screwdriver to finish the machine frame into an SMES.
  7. (Making sure the maintenance hatch is open) Add 10 pieces of Cable coil.png cable coil to give the SMES a terminal (see “Terminal” section after this one). Whatever cable is connected to the terminal on the ground next to the SMES will be the machine’s input.
  8. Add 30 pieces of Cable coil.png cable coil (one full length cable coil).
  9. Add one Smes coil.png superconducting magnetic coil.
  10. Install a Console screen.png console screen into the SMES.
  11. Install an Input controller.png input controller into the SMES.
  12. Finalize the SMES with a Screwdriver.png screwdriver.


New SMES units start without a terminal. Furthermore, terminals may be damaged by explosions or similar effects. Fortunately, installing new terminal is easy.

  1. Open interface of your SMES and turn it's input and output OFF.
  2. Use Screwdriver.png screwdriver on the SMES to open the cover.
  3. Use Cable coil.png cable coil on the SMES to add new terminal. You need 10 pieces of cable for this. If you make a mistake, use Wirecutters.png wirecutters to remove the terminal and repeat this step.
  4. Use Screwdriver.png screwdriver on the SMES to close the cover.

RCON Settings

RCON, or Remote CONtrol, allows remote operation of SMESs from RCON console. To allow usage of RCON you have to set RCON tag. This tag has to be unique (ie. do not use tag already used by another SMES). To set new tag click the SMES with multitool. If you wish to disable RCON you may either cut apropriate wire (see Hacking section), or use tag "NO_TAG".


There are four types of coils in existence:

Name Capacity Throughput
Superconductive Magnetic Coils 50kWh 250kW
Superconductive Capacitance Coils 250kWh 100kW
Superconductive Transmission Coils 20kWh 1250kW
Basic Superconductive Magnetic Coils 10kWh 150kW

Two of each type of Magnetic, Transmission, and Capacitance are in each Engineering Hard Storage (Decks 1 and 3), in one of the crates.

Three SMES layouts are commonly used:

  1. 6x Regular coil: Very easy to set up as all it involves is tossing two extra regular coils into the main SMES. The SMES doesn't have to be dismantled for this, and therefore it's faster than other layouts. Somewhat increases capacity and transfer rate, but only to a limited degree.
  2. 2x Capacitance coil, 4x Transmission coil: This guide's author favorite. This setup results is very useful when combined with a ship-wide shield generator, as it has good storage capacity, while also allowing very rapid charging/discharging (which is ideal for shields). It's disadvantage is that you have to dismantle the main SMES completely, and rebuild it from scratch, using transmission/capacitance coils. When using this setup it's highly recommended to also use Substations as the wattage in main grid will be very dangerous.
  3. 2x Transmission coil, 4x Capacitance coil: An alternative to above setup. Sacrifices large portion of transfer rate for much larger capacity. A fully charged SMES with this setup can run the whole ship for few hours.

When building an SMES you may add only a single Magnetic Coil into it. However, you may add up to five more coils later. This process is slightly more complex than terminal replacement.

  1. Ensure the SMES is discharged. Alternatively, you may disable the failsafes (see point 4.). Please read the "SMES Failure" section of this guide before proceeding.
  2. Open interface of your SMES and turn it's input and output OFF.
  3. Use screwdriver on the SMES to open the cover.
  4. (OPTIONAL) Disable failsafes by cutting the correct wire (see Hacking section).
  5. Use your superconducting magnetic coil(s) on the SMES to install them.
  6. (OPTIONAL) Re-enable failsafes if you disabled them.
  7. Use screwdriver on the SMES to close the cover.

Guide for New Players Map of the SEV Torch Character CreationRoleplayingControlsUser InterfaceSkillsHow to Sol GovPaperwork
SEV Torch Regulations
Alert ProcedureGeneral RegulationsSCG LawSol Code of Uniform JusticeStandard Operating ProcedureUniform GuideCourt Martial SOP
Ships and the Hangar
EVA and InternalsExplorationMiningShipsSupplyOFD
AtmosphericsComputingConstructionHackingRoboticsSMES UnitsSolarsSupermatterTelecommunicationsR-UST
AnomaliesIntegrated CircuitsResearch and DevelopmentXenoarchaeologyXenobiologyXenobotany
Antagonist UplinksPsionics
Contribution and Conduct
Appeals and ComplaintsCoding with NanoUIServer ModerationHow to Apply: ModeratorHow to Apply: Species AppsWiki Contribution